Vibrational Spectra of N-Octanoyl-L-glutamic Acid Oligomer Barium Salts and Their Conformations

Toshiyuki Uehara,* Hirofumi Okabayashi, Keijiro Taga, Tadayoshi Yoshida, Hiroshi Kojima,† and Etsuo Nishio††

Department of Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466
†Gifu National College of Technology, Shinsei-cho, Motosu-gun, Gifu 501-04
††Osaka Laboratory, Perkin-Elmer Japan Co., Ltd., Toyotsu, Suita 564
(Received March 5, 1993)

Barium salts of N-octanoyl-L-glutamic acid oligomers (oct-oligomer salts, residue number, N=2-6, 8, 10, 12, 14, 16, 18, 20, and 22) have been prepared. The vibrational spectra of these molecules were measured and compared with those of β -Ca-poly(L-glutamic acid). For the vibrational spectra of these oligomer salts, the very broad amide I bands at 1644—1655 cm⁻¹ (IR), amide III bands at 1240—1256 cm⁻¹ (Raman) and at 1240—1250 cm⁻¹ (IR) are due to a disordered structure. The Raman bands at 840—855 cm⁻¹ and their counter part at 835—848 cm⁻¹ in the IR spectra may also come from disordered structures. In the C $^{\alpha}$ C stretching-mode region, which strongly reflects the skeletal backbone structure, the Raman bands at 941—944 cm⁻¹ were observed in common for those oligomer salts having residue numbers of N=4-22, and correspond well to the 943 cm⁻¹ band characteristic of the extended helical conformation of charged poly(L-glutamic acid). We may conclude that the oligomer salts (N=2-22) have disordered structures. However, the oligomer chains having at least residue numbers above N=4 are locally relatively regular and may take up an extended helical structure.

Infrared (IR) absorption and Raman scattering spectroscopy have provided a powerful approach for the conformational analysis of polypeptides and proteins. In particular, poly(L-glutamic acid)(poly(Glu)) has offered a very interesting case for the vibrational analysis of secondary structures. Many experimental studies have been carried out concerning poly(Glu) using various techniques, including X-ray and electron diffraction, IR, Raman, and circular dichroism spectroscopic methods. 1—11) The results have revealed that the secondary structure of poly(Glu) strongly depends on such conditions as the temperature, pH, and salt concentration. In particular, the local main chain conformation of polypeptides with charged side chains has been the subject of considerable discussion. Tiffany and Krimm²⁾ have proposed that the local conformations of polypeptide chains having charged side chains are not random, but consist of relatively ordered regions in which the polypeptide chain takes up conformations similar to that of a left-handed 3₁-helix. Krimm and Mark³⁾ indicated based on simplified conformational energy calculations that such a charged helix should have about 2.5 residues/turn; this helical structure has been referred to as the so-called extended helix (EH) conformations. Furthermore, based on CD spectroscopic studies^{12—23)} of a variety of systems including synthetic polypeptides, fibrous proteins, globular proteins and other proteins, it has been elucidated that locally random conformations are quite different from those of the EH conformations. Raman and normal-mode studies of the EH structure for a charged poly(Glu), which has been reported by Sengupta and Krimm,²³⁾ have provided very strong support for such an EH structure. The EH conformation has been found by X-ray diffraction analysis even in a crystalline globular protein.²⁴⁾ However, very little is known about the critical size of a relatively regular region adopting such an EH conformation.

To the critical size for the appearance of a secondary structure of L-glutamic acid oligopeptides in an aqueous solution and in the solid state, much attention has been denoted. However, further study along this line seems to be desirable. In our previous work, he chain-length dependence of the conformations of N-octanoyl-L-glutamic acid oligopeptides (acid types) synthesized by a stepwise procedure was investigated in detail using the vibrational spectra. The results showed that these oligomers take up a β_1 - or β_2 -like structure, similar to that of the two β -forms of poly(Glu) and, that preferential stabilization of the β_1 - or β_2 -forms is strongly dependent on the residue number.

In the present work, the conformations of the barium salts of N-octanoyl-L-glutamic acid oligomers were examined by IR and Raman spectra as a basis for further understanding the EH conformation. The conformations of these oligomer salts are discussed on the basis of a comparison with the vibrational studies of the calcium salt of poly(Glu).¹¹⁾

Experimental

Materials. N-Octanoyl-L-glutamic acid oligopeptides (acid types) were prepared by the stepwise procedure described in our previous paper.²⁸⁾ The barium salts of these oligomer acid types were then prepared according to a previous study.¹⁰⁾ The residue numbers (N) of the barium salts of the N-octanoyl-L-glutamic acid oligomers (oct-oligomers) synthesized for the present study were 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 18, 20, and 22.

Methods. Raman spectra below 4000 cm⁻¹ were measured with a Perkin-Elmer 1700 FT Raman spectrometer having an indium gallium arsenide (InGaAs) detector using near-infrared laser (1064 nm, 500 mW) excitation at

room temperature. The infrared (IR) absorption spectra were recorded on a Perkin–Elmer 1600 Fourier-transform infrared (FTIR) spectrometer (4000—600 $\rm cm^{-1})$ at 20 $^{\circ}{\rm C}$ and 60% relative humidity.

Results and Discussion

For a series of the oct-oligomer barium salts, the FT Raman and FTIR spectra were measured and a band assignment was made on the basis of a comparison with the vibrational spectra of α -poly(Glu)²⁹⁾ and calcium poly(Glu)¹¹⁾ and their normal-mode analyses.^{11,29)} Figures 1 and 2 show the FT Raman and FTIR spectra of these oct-oligomer salts in the solid state. The observed frequencies $(\tilde{\nu}/\text{cm}^{-1})$ are listed in Table 1. For calcium, strontium and barium salts of poly(Glu), the crystal structures, based on the antiparallel-chain pleated sheet structure proposed by Pauling & Corey, has been investigated by Keith et al., 4,5) using an analysis of the X-ray powder diffraction patterns and the selected-area electron diffraction patterns. They have concluded from the observed intersheet spacings and electrostatic considerations that the β -sheet structures of all three salts for poly(Glu) are essentially the same, and that the side chains are fully extended with the planes of the

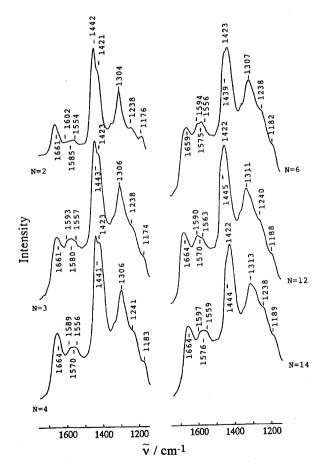


Fig. 1. FT Raman spectra of oct-oligomer barium salts (N: residue number) in the solid state in the $1100-1800~{\rm cm}^{-1}$ region.

COO⁻ groups almost parallel to the chain axis. Therefore, a comparison of the vibrational spectra of these oct-oligomer barium salts with those of calcium salt of poly(Glu) provides structural information concerning the oct-oligomer barium salts.

Apparently, it can be seen that the vibrational bands for these oct-oligomer salts closely correspond to those of the β -type calcium poly(L-glutamate) (Table 1). However, their Raman and IR spectra are extremely broadened and less distinct, as shown in Figs. 1 and 2. This may be due to the presence of a disordered structure in the oligomer salts, which provides the very broad bands in the spectra, resulting from a wide distribution of the dihedral angles ϕ about NC $^{\alpha}$ and ψ about C $^{\alpha}$ C in the peptide linkage, and from the strong Ba $^{2+}$ -binding to the COO $^-$ groups of the oct-oligomers. Therefore, in the oct-oligomer salts the possibility for the existence of disordered conformations is present. The Raman and IR bands and their assignment are discussed in detail concerning the conformations.

For the oct-oligomer barium Amide I Modes. salts, very broad Raman bands at 1659—1668 cm⁻¹ and very broad IR bands at $1644-1655 \text{ cm}^{-1}$ are observed in common (Fig. 1), and correspond well to the amide I bands (mainly the C=O stretching) at 1665 (Raman) and 1650—1660 (IR) cm⁻¹ for β -Ca-poly-(Glu), 11) respectively. However, in the IR spectra of the oct-oligomer salts (Fig. 2), the bands corresponding to the 1624 cm⁻¹ band characteristic of an antiparallel-chain pleated β -sheet structure of Ca-poly(Glu)^{5,11)} are not found. Since the broad IR band at 1650-1660 cm⁻¹ of Ca-poly(Glu) is due to the presence of some disordered Ca-poly(Glu), 11) the IR bands at 1644—1655 cm⁻¹ for the oligomer barium salts may indicate the presence of disordered structures in oligomer samples.

Amide II Mode and COO⁻ Characteristic Band. For the IR spectra of the oct-oligomer barium salts, the assignment of the amide II mode (NH inplane bending plus CN stretching) is difficult, since the IR spectra, in which the amide II bands are strongest, are overlapped in this region due to the strong COO⁻ antisymmetric stretching mode at 1549—1556 cm⁻¹ (Fig. 2).

For the FT Raman spectra of simple oct-oligomer salts (N=2-6) (Fig. 1), three bands at 1554—1561, 1570—1585, and 1589—1602 cm⁻¹ are observed, and closely correspond to the Raman bands at 1556, 1569, and 1595 cm⁻¹ for β -Ca-poly(Glu).¹¹⁾ This may imply the presence of β -sheet structures in these oct-oligomer barium salts.

The Raman bands at 1554—1561 cm⁻¹ might be due to the COO⁻ antisymmetric stretching modes ($\nu_{\rm as}({\rm COO^-})$), and the Raman bands at 1570—1585 and 1589—1602 cm⁻¹ are assignable to the amide II modes on the basis of a normal-mode analysis for β -type Ca-poly(Glu).¹¹⁾ As was elucidated in our previous paper,³⁰⁾ the antisymmetric stretching bands aris-

Table 1. Observed Vibrational Band Frequencies^{a)} ($\tilde{\nu}/\text{cm}^{-1}$) Characteristic of Oct-Oligomer Barium Salts (Residue Number, N=2-2)

						arium sal						
2		3		4		5		6		8		_
Raman	IR	Raman	IR	Raman	IR	Raman	IR	Raman	IR	Raman	IR	Assignment ^{b,c}
$3406 \mathrm{sh}$		$3421 \mathrm{sh}$		3418w		3423w		3433s		3419w		Amide A
3300vw	3300m	3253w	3293m	3262m	3284m	3262m	3286m	3267s	3293m	3256m	3288m	,
3059vw	3076w	$3072 \mathrm{sh}$	3078w	$3084 \mathrm{sh}$	3070w	$3064 \mathrm{sh}$	3076w	3072s	3070w	3065m	3079w	Amide B
2932vs	2956w 2929w	2930vs	$2956w \\ 2930w$	2932vs	2956w 2931w	2932vs	2958w 2934w	2930vs	2953w 2936w	2930vs	2964w 2946w)
2932vs 2874sh	2929W 2872sh	2872sh	$2872 \mathrm{sh}$	2880sh	2931w 2871 sh	2932 vs 2876 sh	2934w 2872w	$2879 \mathrm{sh}$	2930w 2873w	2872sh	2340W	$\nu(CH)$
$2859 \mathrm{sh}$	2858w	2012311	2857w	2000311	2860w	2010311	2861w	2013311	2861sh	2012311		J
1661m	1644s	1661m	1648s	1664m	1652s	1666m	1655s	1659m	1654s	$1660 \mathrm{sh}$	1652s)
	10110	1001111	10100	1001111	10020	1000111	10000	1000111	10010	1640m	20020	Amide I
										$1620 \mathrm{sh}$		J
1602vw		$1593 \mathrm{sh}$		$1589 \mathrm{sh}$		$1593 \mathrm{sh}$		1594m		1594m		Amide II
$1585 \mathrm{sh}$		1580 m		$1570 \mathbf{m}$		1581m		1575m		$1576 \mathrm{sh}$,
1554vw	1552vs	$1557\mathrm{sh}$	1553 vs	$1556 \mathrm{sh}$	1551vs	$1561 \mathrm{sh}$	1549vs	$1556\mathrm{sh}$	1555 vs	$1558\mathrm{sh}$	1553vs	$\nu_{\rm as}({ m CO}_2^-)$
1442s	$1446 \mathrm{sh}$	1443s	$1445 \mathrm{sh}$	1441s	$1442 \mathrm{sh}$	1440s	$1443 \mathrm{sh}$	$1439 \mathrm{sh}$	$1443 \mathrm{sh}$	$1446 \mathrm{sh}$	$1444 \mathrm{sh}$	$s(CH_2)$
$1421 \mathrm{sh}$		$1423 \mathrm{sh}$		1423s		1424s		1423s		1422s		,
	1408s		1408s		1406s		1406s		1406s		1407s	$ u_{\mathrm{s}}(\mathrm{CO}_{2}^{-})$
347w	1344w	$1349 \mathrm{sh}$	1349w	$1349 \mathrm{sh}$	1350w	$1348 \mathrm{sh}$	1351w	1353sh	1351w	1351m	1350w	$w(CH_2)$
.304m	1310w	1306m	1310w	1306m	1306w	1306m	1310w	1307m	1311w	1304m	1314w	$t(CH_2)$
1238w	1237sh	$1238 \mathrm{sh}$	$1240\mathrm{sh}$	1241sh	1240sh	$1245\mathrm{sh}$	1248sh	1238sh	$1247\mathrm{sh}$	1240sh	1249sh	Amide III
176vw	1178vw	1174sh	1181vw	1183sh	1182vw	1187w	1184vw	1182 sh	1183vw	1189sh	1184vw	$\mathbf{w}(\mathrm{CH_2})$
1077w	1128vw 1087sh	1118w 1081w	1122vw	1116w 1077w	1118vw 1088sh	1119sh	1126vw 1089vw	1117w 1075w	1126vw 1088vw	1128w 1080w	1126vw 1076sh	,
.065sh	1087811	1051w 1059sh	$1087 \mathrm{sh}$	1077W 1068sh	1000811	1075w 1046 sh	1009VW	1075w 1050sh	1000VW	1050w 1051sh	1070811	Skeletal and
.003sn	1026vw	$1034 \mathrm{sh}$	1029vw	1000sh 1021sh	1035vw	1040sh $1025sh$	1036vw	$1029 \mathrm{sh}$	1037vw	1031sh $1019sh$	1037vw	side-chain
945w	940vw	938w	934vw	943w	934vw	944w	934vw	941w	934vw	944w	937vw	stretching
894w	888vw	894w	888vw	894w	888vw	894w	887vw	894w	887vw	898w	888vw	
842vw	837vw	844vw	839vw	847vw	838vw	850vw	835vw	850vw	841vw	851vw	840vw	í
792 sh		$794 \mathrm{sh}$		787vw		803vw		801vw		$794 \mathrm{sh}$		$r(CH_2)$
783vw	776vw	781vw	777vw	$776 \mathrm{sh}$	776vw	784vw	779vw	782vw	775vw	783vw	782vw	
		IOIAM	111VW	110311	110111	104 V W	113VW	102 7 77	110 V W	100 V W	102111	,
		101VW	111VW			arium salt		1024W	710VW	100V W	102711	,
	.0		2		ligomer b	arium salt			0	2		
1				Oct-o	ligomer b	arium salt	ts(N)					
1 Raman	0	1	2	Oct-o	ligomer b	arium salt	ts (N)	2	0	2	2 IR	Assignment ^{b,c}
1 Raman 8421w	0 IR 3282m	Raman	2 IR 3281m	Oct-o	ligomer b 4 IR 3296m	arium salt 1 Raman	IR 3282m	Raman	0	2 Raman	2	
1 Raman 3421w 3258m	0 IR 3282m 3078w	Raman 3423w	2 IR 3281m 3076w	Oct-o Raman 3416sh	Iligomer b 4 IR 3296m 3079w	arium salt 1 Raman 3416w	IR 3282m 3082w	2 Raman 3421w	3304m 3074vw	2 Raman 3416sh	2 IR 3282m 3081w	Assignment ^{b,c}
1 Raman 3421w 3258m 3067m	0 IR 3282m 3078w 2962sh	1 Raman 3423w 3260m 3071m	2 IR 3281m 3076w 2974vw	Oct-o 1 Raman 3416sh 3258w 3049sh	IIR IR 3296m 3079w 2978w	arium salt	1R 3282m 3082w 2978vw	2 Raman 3421w 3258m 3058m	IR 3304m 3074vw 2975vw	2 Raman 3416sh 3256w 3077sh	2 IR 3282m 3081w 2980sh	Assignment ^{b,c} Amide A Amide B
1 Raman 3421w 3258m 3067m	0 IR 3282m 3078w	1 Raman 3423w 3260m 3071m 2933vs	2 IR 3281m 3076w	Oct-o 1 Raman 3416sh 3258w 3049sh 2935vs	Iligomer b 4 IR 3296m 3079w	1 Raman 3416w 3258m 3070m 2930vs	IR 3282m 3082w	2 Raman 3421w 3258m 3058m 2930vs	3304m 3074vw	2 Raman 3416sh 3256w 3077sh 2933vs	2 IR 3282m 3081w	
1 Raman 3421w 3258m 3067m 2933vs 2874sh	0 IR 3282m 3078w 2962sh	1 Raman 3423w 3260m 3071m 2933vs 2872sh	2 IR 3281m 3076w 2974vw	Oct-o 1 Raman 3416sh 3258w 3049sh 2935vs 2872sh	IIR IR 3296m 3079w 2978w	arium salt	1R 3282m 3082w 2978vw	2 Raman 3421w 3258m 3058m 2930vs 2874sh	IR 3304m 3074vw 2975vw	2 Raman 3416sh 3256w 3077sh 2933vs 2872sh	2 IR 3282m 3081w 2980sh	Assignment ^{b,c} Amide A Amide B
1 Raman 3421w 3258m 3067m 2933vs 2874sh	0 IR 3282m 3078w 2962sh 2948vw	1 Raman 3423w 3260m 3071m 2933vs	2 IR 3281m 3076w 2974vw 2939vw	Oct-o 1 Raman 3416sh 3258w 3049sh 2935vs	IIR 3296m 3079w 2978w 2944w	Raman 3416w 3258m 3070m 2930vs 2881sh	1R 3282m 3082w 2978vw 2943vw	Raman 3421w 3258m 3058m 2930vs 2874sh 1668m	3304m 3074vw 2975vw 2938vw	2 Raman 3416sh 3256w 3077sh 2933vs 2872sh 1666sh	2 IR 3282m 3081w 2980sh 2940vw	Assignment ^{b,c} $ \begin{cases} A \text{mide A} \\ A \text{mide B} \end{cases} $ $ \nu(\text{CH}) $
1 Raman 3421w 3258m 3067m 2933vs 2874sh	0 IR 3282m 3078w 2962sh	1 Raman 3423w 3260m 3071m 2933vs 2872sh	2 IR 3281m 3076w 2974vw	Oct-o 1 Raman 3416sh 3258w 3049sh 2935vs 2872sh	IIR IR 3296m 3079w 2978w	1 Raman 3416w 3258m 3070m 2930vs	1R 3282m 3082w 2978vw	Raman 3421w 3258m 3058m 2930vs 2874sh 1668m 1655m	IR 3304m 3074vw 2975vw	2 Raman 3416sh 3256w 3077sh 2933vs 2872sh 1666sh 1650m	2 IR 3282m 3081w 2980sh	Assignment ^{b,c} Amide A Amide B
1 Raman 3421w 3258m 3067m 2933vs 2874sh 662m	0 IR 3282m 3078w 2962sh 2948vw	Raman 3423w 3260m 3071m 2933vs 2872sh 1664m	2 IR 3281m 3076w 2974vw 2939vw	Oct-o Raman 3416sh 3258w 3049sh 2935vs 2872sh 1664m	IIR 3296m 3079w 2978w 2944w	arium salt Raman 3416w 3258m 3070m 2930vs 2881sh 1647sh	1R 3282m 3082w 2978vw 2943vw	Raman 3421w 3258m 3058m 2930vs 2874sh 1668m 1655m 1638m	3304m 3074vw 2975vw 2938vw	2 Raman 3416sh 3256w 3077sh 2933vs 2872sh 1666sh 1650m 1633sh	2 IR 3282m 3081w 2980sh 2940vw	Assignment ^{b,c} $ \begin{cases} A \text{mide A} \\ A \text{mide B} \end{cases} $ $ \begin{cases} \nu(\text{CH}) \end{cases} $ $ \begin{cases} A \text{mide I} \end{cases} $
1 Raman 3421w 3258m 3067m 2933vs 2874sh .662m	0 IR 3282m 3078w 2962sh 2948vw	1 Raman 3423w 3260m 3071m 2933vs 2872sh 1664m	2 IR 3281m 3076w 2974vw 2939vw	Oct-o Raman 3416sh 3258w 3049sh 2935vs 2872sh 1664m	IIR 3296m 3079w 2978w 2944w	1 Raman 3416w 3258m 3070m 2930vs 2881sh 1647sh 1594m	1R 3282m 3082w 2978vw 2943vw	2 Raman 3421w 3258m 3058m 2930vs 2874sh 1668m 1655m 1638m 1601sh	3304m 3074vw 2975vw 2938vw	2 Raman 3416sh 3256w 3077sh 2933vs 2872sh 1666sh 1650m 1633sh 1606m	2 IR 3282m 3081w 2980sh 2940vw	Assignment ^{b,c} $ \begin{cases} A \text{mide A} \\ A \text{mide B} \end{cases} $ $ \nu(\text{CH}) $
1 Raman 3421w 3258m 3067m 2933vs 2874sh .662m	0 IR 3282m 3078w 2962sh 2948vw	1 Raman 3423w 3260m 3071m 2933vs 2872sh 1664m 1590m 1570sh	2 IR 3281m 3076w 2974vw 2939vw	Oct-o Raman 3416sh 3258w 3049sh 2935vs 2872sh 1664m 1597sh 1576m	IIgomer b 4 IR 3296m 3079w 2978w 2944w 1654s	1 Raman 3416w 3258m 3070m 2930vs 2881sh 1647sh 1594m 1580m	1R 3282m 3082w 2978vw 2943vw	Raman 3421w 3258m 3058m 2930vs 2874sh 1668m 1655m 1638m 1601sh 1581m	3304m 3074vw 2975vw 2938vw	2 Raman 3416sh 3256w 3077sh 2933vs 2872sh 1666sh 1650m 1633sh 1606m 1582m	2 IR 3282m 3081w 2980sh 2940vw	Assignment ^{b,c} $ \begin{cases} A \text{mide A} \\ A \text{mide B} \\ \end{cases} \nu(CH) $ $ \begin{cases} A \text{mide I} \\ \end{cases} $ $ \begin{cases} A \text{mide II} \\ \end{cases} $
1 Raman 3421w 3258m 3067m 2933vs 2874sh .662m .589m .576m .555sh	0 IR 3282m 3078w 2962sh 2948vw 1652s	1 Raman 3423w 3260m 3071m 2933vs 2872sh 1664m 1590m 1570sh 1563m	2 IR 3281m 3076w 2974vw 2939vw 1652s	Oct-o Raman 3416sh 3258w 3049sh 2935vs 2872sh 1664m 1597sh 1576m 1559sh	IIgomer b 4 IR 3296m 3079w 2978w 2944w 1654s	1 Raman 3416w 3258m 3070m 2930vs 2881sh 1647sh 1580m 1548m	18 IR 3282m 3082w 2978vw 2943vw 1652s	2874sh 1668m 1655m 1638m 1651sh 1559sh	3304m 3074vw 2975vw 2938vw 1654s	2 Raman 3416sh 3256w 3077sh 2933vs 2872sh 1666sh 1650m 1633sh 1606m 1582m 1559m	2 IR 3282m 3081w 2980sh 2940vw 1654s	Assignment ^{b,c} $ \begin{cases} A \text{mide A} \\ A \text{mide B} \end{cases} \\ \nu(\text{CH}) $ $ \begin{cases} A \text{mide I} \\ A \text{mide II} \\ \nu_{as}(\text{CO}_{2}^{-}) \end{cases} $
1 Raman 3421w 3258m 3067m 2933vs 3874sh 662m 589m 576m	0 IR 3282m 3078w 2962sh 2948vw	1 Raman 3423w 3260m 3071m 2933vs 2872sh 1664m 1590m 1570sh 1563m 1445sh	2 IR 3281m 3076w 2974vw 2939vw	Oct-o Raman 3416sh 3258w 3049sh 2935vs 2872sh 1664m 1597sh 1576m 1559sh 1444sh	IIgomer b 4 IR 3296m 3079w 2978w 2944w 1654s	Raman 3416w 3258m 3070m 2930vs 2881sh 1647sh 1594m 1580m 1548m 1441sh	1R 3282m 3082w 2978vw 2943vw	Raman 3421w 3258m 3058m 2930vs 2874sh 1668m 1655m 1638m 1601sh 1581m	3304m 3074vw 2975vw 2938vw	2 Raman 3416sh 3256w 3077sh 2933vs 2872sh 1666sh 1650m 1633sh 1606m 1582m 1559m 1449sh	2 IR 3282m 3081w 2980sh 2940vw 1654s	Assignment ^{b,c} $ \begin{cases} A \text{mide A} \\ A \text{mide B} \\ \end{cases} \nu(\text{CH}) $ $ \begin{cases} A \text{mide I} \\ \end{cases} A \text{mide II} $
1 Raman M421w M258m M067m M2933vs M874sh M662m M5589m M555sh M444sh	0 IR 3282m 3078w 2962sh 2948vw 1652s 1553vs 1442sh	1 Raman 3423w 3260m 3071m 2933vs 2872sh 1664m 1590m 1570sh 1563m	2 IR 3281m 3076w 2974vw 2939vw 1652s 1556vs 1444sh	Oct-o Raman 3416sh 3258w 3049sh 2935vs 2872sh 1664m 1597sh 1576m 1559sh	IIgomer b 4 IR 3296m 3079w 2978w 2944w 1654s 1551vs 1438sh	1 Raman 3416w 3258m 3070m 2930vs 2881sh 1647sh 1580m 1548m	1R 3282m 3082w 2978vw 2943vw 1652s 1556vs 1443sh	Raman 3421w 3258m 3058m 2930vs 2874sh 1668m 1655m 1638m 1601sh 1581m 1559sh 1444sh	3304m 3074vw 2975vw 2938vw 1654s 1556vs 1444sh	2 Raman 3416sh 3256w 3077sh 2933vs 2872sh 1666sh 1650m 1633sh 1606m 1582m 1559m	2 IR 3282m 3081w 2980sh 2940vw 1654s 1554vs 1440sh	Assignment ^{b,c} $ \begin{cases} A \text{mide A} \\ A \text{mide B} \end{cases} \\ \nu(\text{CH}) $ $ \begin{cases} A \text{mide I} \\ A \text{mide II} \\ \nu_{as}(\text{CO}_2^-) \\ s(\text{CH}_2) \end{cases} $
1 Raman 3421w 3258m 3067m 2933vs 2874sh 662m 5589m 5576m 555sh 444sh 421s	0 IR 3282m 3078w 2962sh 2948vw 1652s	1 Raman 3423w 3260m 3071m 2933vs 2872sh 1664m 1590m 1570sh 1563m 1445sh	2 IR 3281m 3076w 2974vw 2939vw 1652s	Oct-o Raman 3416sh 3258w 3049sh 2935vs 2872sh 1664m 1597sh 1576m 1559sh 1444sh	IIgomer b 4 IR 3296m 3079w 2978w 2944w 1654s	Raman 3416w 3258m 3070m 2930vs 2881sh 1647sh 1594m 1580m 1548m 1441sh	18 IR 3282m 3082w 2978vw 2943vw 1652s	Raman 3421w 3258m 3058m 2930vs 2874sh 1668m 1655m 1638m 1601sh 1581m 1559sh 1444sh	3304m 3074vw 2975vw 2938vw 1654s	2 Raman 3416sh 3256w 3077sh 2933vs 2872sh 1666sh 1650m 1633sh 1606m 1582m 1559m 1449sh	2 IR 3282m 3081w 2980sh 2940vw 1654s	Assignment ^{b,c} $ \begin{cases} Amide & A \\ Amide & B \end{cases} \\ \nu(CH) $ $ \begin{cases} Amide & I \\ Amide & II \end{cases} \\ \nu_{as}(CO_2^-) $ $ \begin{cases} s(CH_2) \\ \nu_s(CO_2^-) \end{cases} $
1 Raman 3421w 3258m 3067m 2933vs 2874sh 662m 5576m 5576m 444sh 421s 351sh	0 IR 3282m 3078w 2962sh 2948vw 1652s 1553vs 1442sh 1407s	1 Raman 3423w 3260m 3071m 2933vs 2872sh 1664m 1570sh 1563m 1445sh 1422s	2 IR 3281m 3076w 2974vw 2939vw 1652s 1556vs 1444sh 1406s	Oct-o Raman 3416sh 3258w 3049sh 2935vs 2872sh 1664m 1597sh 1576m 1559sh 1444sh 1422s	IIgomer b 4 IR 3296m 3079w 2978w 2944w 1654s 1551vs 1438sh 1406s	Raman 3416w 3258m 3070m 2930vs 2881sh 1647sh 1594m 1580m 1548m 1441sh	1R 3282m 3082w 2978vw 2943vw 1652s 1556vs 1443sh 1408m	Raman 3421w 3258m 3058m 2930vs 2874sh 1668m 1655m 1638m 1601sh 1559sh 1444sh 1421s	3304m 3074vw 2975vw 2938vw 1654s 1556vs 1444sh 1407m	2 Raman 3416sh 3256w 3077sh 2933vs 2872sh 1666sh 1650m 1633sh 1606m 1582m 1449sh 1424s	2 IR 3282m 3081w 2980sh 2940vw 1654s 1554vs 1440sh 1408m	Assignment ^{b,c} $ \begin{cases} A \text{mide A} \\ A \text{mide B} \end{cases} \\ \nu(\text{CH}) $ $ \begin{cases} A \text{mide I} \\ A \text{mide II} \end{cases} \\ \nu_{as}(\text{CO}_2^-) $ $ \begin{cases} s(\text{CH}_2) \end{cases} $
18aman 4421w 4258m 4067m 4933vs 4874sh 662m 555sh 444sh 421s 351sh 311m	0 IR 3282m 3078w 2962sh 2948vw 1652s 1553vs 1442sh 1407s 1352vw	1 Raman 3423w 3260m 3071m 2933vs 2872sh 1664m 1590m 1570sh 1563m 1445sh 1422s 1350sh	2 IR 3281m 3076w 2974vw 2939vw 1652s 1556vs 1444sh 1406s 1352vw	Oct-o Raman 3416sh 3258w 3049sh 2935vs 2872sh 1664m 1597sh 1576m 1559sh 1444sh 1422s	18 3296m 3079w 2978w 2944w 1654s 1551vs 1438sh 1406s 1351w	1 Raman 3416w 3258m 3070m 2930vs 2881sh 1647sh 1594m 1580m 1441sh 1424s	18 IR 3282m 3082w 2978vw 2943vw 1652s 1556vs 1443sh 1408m 1351vw	Raman 3421w 3258m 3058m 2930vs 2874sh 1668m 1655m 1638m 1601sh 1559sh 1444sh 1421s	18 3304m 3074vw 2975vw 2938vw 1654s 1556vs 1444sh 1407m 1352vw	2 Raman 3416sh 3256w 3077sh 2933vs 2872sh 1666sh 1650m 1633sh 1606m 1582m 1559m 1449sh 1424s	2 IR 3282m 3081w 2980sh 2940vw 1654s 1554vs 1440sh 1408m 1352vw	Assignment ^{b,c} $ \begin{cases} Amide & A \\ Amide & B \end{cases} $ $ \begin{cases} \nu(CH) \end{cases} $ $ \begin{cases} Amide & II \\ \nu_{as}(CO_2^-) \\ s(CH_2) \end{cases} $ $ \begin{cases} \nu_{s}(CO_2^-) \\ w(CH_2) \end{cases} $
18aman 3421w 3258m 3067m 3933vs 3874sh 3556m 555sh 444sh 421s 351sh 311m 240sh 185sh	0 IR 3282m 3078w 2962sh 2948vw 1652s 1553vs 1442sh 1407s 1352vw 1312w	1 Raman 3423w 3260m 3071m 2933vs 2872sh 1664m 1570sh 1563m 1445sh 1422s 1350sh 1311m 1240sh 1188sh	2 IR 3281m 3076w 2974vw 2939vw 1652s 1556vs 1444sh 1406s 1352vw 1314w 1250sh 1184vw	Oct-o Raman 3416sh 3258w 3049sh 2935vs 2872sh 1664m 1597sh 1576m 1559sh 1444sh 1422s 1354sh 1313m	18 3296m 3079w 2978w 2944w 1654s 1551vs 1438sh 1406s 1351w 1310w	1 Raman 3416w 3258m 3070m 2930vs 2881sh 1647sh 1594m 1580m 1441sh 1424s 1312m	18 IR 3282m 3082w 2978vw 2943vw 1652s 1556vs 1443sh 1408m 1351vw 1311vw	Raman 3421w 3258m 3058m 2930vs 2874sh 1668m 1655m 1638m 1601sh 1551m 1559sh 1444sh 1421s 1353m 1309m	10 IR 3304m 3074vw 2975vw 2938vw 1654s 1556vs 1444sh 1407m 1352vw 1311w	2 Raman 3416sh 3256w 3077sh 2933vs 2872sh 1666sh 1650m 1633sh 1606m 1582m 1449sh 1424s 1362m 1311m 1246m 1181sh	2 IR 3282m 3081w 2980sh 2940vw 1654s 1554vs 1440sh 1408m 1352vw 1313w 1250sh 1186vw	Assignment ^{b,c} $ \begin{cases} Amide & A \\ Amide & B \end{cases} $ $ \begin{cases} \nu(CH) \end{cases} $ $ \begin{cases} Amide & II \\ \nu_{as}(CO_2^-) \\ s(CH_2) \end{cases} $ $ \begin{cases} \nu_{s}(CO_2^-) \\ w(CH_2) \\ t(CH_2) \end{cases} $ $ Amide & III \end{cases} $
18aman 3421w 3258m 3067m 3933vs 3874sh 662m 589m 576m 555sh 444sh 421s 351sh 311m 240sh 185sh 133w	0 IR 3282m 3078w 2962sh 2948vw 1652s 1553vs 1442sh 1407s 1352vw 1312w 1249sh	1 Raman 3423w 3260m 3071m 2933vs 2872sh 1664m 1590m 1570sh 1563m 1445sh 1422s 1350sh 1311m 1240sh 1188sh 1122w	2 IR 3281m 3076w 2974vw 2939vw 1652s 1556vs 1444sh 1406s 1352vw 1314w 1250sh 1184vw 1122vw	Oct-o Raman 3416sh 3258w 3049sh 2935vs 2872sh 1664m 1597sh 1576m 1559sh 1444sh 1422s 1354sh 1313m 1238sh	18 3296m 3079w 2978w 2944w 1654s 1551vs 1438sh 1406s 1351w 1310w 1249sh 1183vw 1122vw	1 Raman 3416w 3258m 3070m 2930vs 2881sh 1647sh 1594m 1548m 1441sh 1424s 1312m 1250sh 1187sh	18 IR 3282m 3082w 2978vw 2943vw 1652s 1556vs 1443sh 1408m 1351vw 1311vw 1250sh 1185vw 1126vw	Raman 3421w 3258m 3058m 2930vs 2874sh 1668m 1655m 1638m 1601sh 1559sh 1444sh 1421s 1353m 1309m 1256m 1194sh	18 3304m 3074vw 2975vw 2938vw 1654s 1556vs 1444sh 1407m 1352vw 1311w 1250sh	Raman 3416sh 3256w 3077sh 2933vs 2872sh 1666sh 1650m 1633sh 1606m 1582m 1559m 1449sh 1424s 1362m 1311m 1246m 1181sh 1132w	2 IR 3282m 3081w 2980sh 2940vw 1654s 1554vs 1440sh 1408m 1352vw 1313w 1250sh	Assignment ^{b,c} $ \begin{cases} Amide & A \\ Amide & B \end{cases} $ $ \begin{cases} \nu(CH) \end{cases} $ $ \begin{cases} Amide & II \\ \nu_{as}(CO_2^-) \\ s(CH_2) \end{cases} $ $ \begin{cases} \nu_{s}(CO_2^-) \\ v(CH_2) \\ t(CH_2) \end{cases} $ $ Amide & III \end{cases} $
18aman 3421w 3258m 3067m 3933vs 3874sh 662m 589m 576m 555sh 444sh 421s 351sh 311m 240sh 185sh 133w 109w	1R 3282m 3078w 2962sh 2948vw 1652s 1553vs 1442sh 1407s 1352vw 1312w 1249sh 1184vw 1126vw	1 Raman 3423w 3260m 3071m 2933vs 2872sh 1664m 1590m 1570sh 1563m 1445sh 1422s 1350sh 1311m 1240sh 1188sh 1122w 1087sh	2 IR 3281m 3076w 2974vw 2939vw 1652s 1556vs 1444sh 1406s 1352vw 1314w 1250sh 1184vw	Oct-o Raman 3416sh 3258w 3049sh 2935vs 2872sh 1664m 1597sh 1576m 1559sh 1444sh 1422s 1354sh 1313m 1238sh 1136w	18 3296m 3079w 2978w 2944w 1654s 1551vs 1438sh 1406s 1351w 1310w 1249sh 1183vw	1 Raman 3416w 3258m 3070m 2930vs 2881sh 1647sh 1594m 1548m 1441sh 1424s 1312m 1250sh 1187sh 1089w	18 IR 3282m 3082w 2978vw 2943vw 1652s 1556vs 1443sh 1408m 1351vw 1311vw 1250sh 1185vw	Raman 3421w 3258m 3058m 2930vs 2874sh 1668m 1655m 1638m 1601sh 1559sh 1444sh 1421s 1353m 1309m 1256m 1194sh 1087sh	18 3304m 3074vw 2975vw 2938vw 1654s 1556vs 1444sh 1407m 1352vw 1311w 1250sh	Raman 3416sh 3256w 3077sh 2933vs 2872sh 1666sh 1650m 1633sh 1606m 1582m 1559m 1449sh 1424s 1362m 1311m 1246m 1181sh 1132w 1081w	2 IR 3282m 3081w 2980sh 2940vw 1654s 1554vs 1440sh 1408m 1352vw 1313w 1250sh 1186vw	Assignment ^{b,c} $ \begin{cases} A \text{mide A} \\ A \text{mide B} \end{cases} \\ \nu(\text{CH}) $ $ \begin{cases} A \text{mide I} \\ A \text{mide II} \end{cases} \\ \nu_{as}(\text{CO}_2^-) $ $ \begin{cases} s(\text{CH}_2) \\ v_s(\text{CH}_2) \\ t(\text{CH}_2) \\ A \text{mide III} \end{cases} \\ w(\text{CH}_2) $
18aman 3421w 3258m 3067m 3933vs 3874sh 662m 589m 576m 555sh 444sh 421s 351sh 311m 240sh 185sh 133w 109w	1R 3282m 3078w 2962sh 2948vw 1652s 1553vs 1442sh 1407s 1352vw 1312w 1249sh 1184vw 1126vw	1 Raman 3423w 3260m 3071m 2933vs 2872sh 1664m 1590m 1570sh 1563m 1445sh 1422s 1350sh 1311m 1240sh 1188sh 1122w 1087sh 1070w	2 IR 3281m 3076w 2974vw 2939vw 1652s 1556vs 1444sh 1406s 1352vw 1314w 1250sh 1184vw 1122vw 1091sh	Oct-o Raman 3416sh 3258w 3049sh 2935vs 2872sh 1664m 1597sh 1576m 1559sh 1444sh 1422s 1354sh 1313m 1238sh 1136w 1076m	18 3296m 3079w 2978w 2978w 2944w 1654s 1551vs 1438sh 1406s 1351w 1310w 1249sh 1183vw 1122vw 1096sh	1 Raman 3416w 3258m 3070m 2930vs 2881sh 1647sh 1594m 1548m 1441sh 1424s 1312m 1250sh 1187sh 1089w 1067sh	18 IR 3282m 3082w 2978vw 2943vw 1652s 1556vs 1443sh 1408m 1351vw 1311vw 1250sh 1185vw 1126vw 1097sh	Raman 3421w 3258m 3058m 2930vs 2874sh 1668m 1655m 1638m 1601sh 1559sh 1444sh 1421s 1353m 1309m 1256m 1194sh 1087sh 1087sh 1074w	18 3304m 3074vw 2975vw 2938vw 1654s 1556vs 1444sh 1407m 1352vw 1311w 1250sh 1184vw	2 Raman 3416sh 3256w 3077sh 2933vs 2872sh 1666sh 1650m 1633sh 1606m 1582m 1559m 1449sh 1424s 1362m 1311m 1246m 1181sh 1132w 1081w 1068w	2 IR 3282m 3081w 2980sh 2940vw 1654s 1554vs 1440sh 1408m 1352vw 1313w 1250sh 1186vw 1125vw	Assignment ^{b,c} $ \begin{cases} A \text{mide A} \\ A \text{mide B} \end{cases} \\ \nu(\text{CH}) $ $ \begin{cases} A \text{mide I} \\ A \text{mide II} \end{cases} \\ \nu_{as}(\text{CO}_2^-) \\ \nu_{s}(\text{CH}_2) \end{cases} \\ \nu_{c}(\text{CH}_2) $ $ \iota(\text{CH}_2) \end{cases} \\ \lambda_{c}(\text{CH}_2) $ $ \lambda_{c}(\text{CH}_2) \end{cases} \\ \lambda_{c}(\text{CH}_2) $ $ \lambda_{c}(\text{CH}_2) \end{cases} \\ \lambda_{c}(\text{CH}_2) $ $ \lambda_{c}(\text{CH}_2) $
18aman 4421w 4258m 4067m 4933vs 4874sh 662m 555sh 444sh 421s 351sh 311m 240sh 185sh 109w 076w	1R 3282m 3078w 2962sh 2948vw 1652s 1553vs 1442sh 1407s 1352vw 1312w 1249sh 1184vw 1126vw 1076sh 1037vw	1 Raman 3423w 3260m 3071m 2933vs 2872sh 1664m 1570sh 1563m 1445sh 1422s 1350sh 1311m 1240sh 1188sh 1122w 1087sh 1070w 1044sh	2 IR 3281m 3076w 2974vw 2939vw 1652s 1556vs 1444sh 1406s 1352vw 1314w 1250sh 1184vw 1122vw 1091sh	Oct-o Raman 3416sh 3258w 3049sh 2935vs 2872sh 1664m 1597sh 1576m 1559sh 1444sh 1422s 1354sh 1313m 1238sh 1136w 1076m 1048sh	18 3296m 3079w 2978w 2944w 1654s 1551vs 1438sh 1406s 1351w 1310w 1249sh 1183vw 1122vw 1096sh 1039vw	1 Raman 3416w 3258m 3070m 2930vs 2881sh 1647sh 1594m 1548m 1441sh 1424s 1312m 1250sh 1187sh 1089w 1067sh 1044sh	18 IR 3282m 3082w 2978vw 2943vw 1652s 1556vs 1443sh 1408m 1351vw 1311vw 1250sh 1185vw 1126vw 1126vw 1097sh	Raman 3421w 3258m 3058m 2930vs 2874sh 1668m 1655m 1638m 1601sh 1559sh 1444sh 1421s 1353m 1309m 1256m 1194sh 1087sh 1074w 1038sh	18 3304m 3074vw 2975vw 2938vw 1654s 1556vs 1444sh 1407m 1352vw 1311w 1250sh 1184vw	2 Raman 3416sh 3256w 3077sh 2933vs 2872sh 1666sh 1650m 1538ch 1606m 1559m 1449sh 1424s 1362m 1311m 1246m 1181sh 1132w 1081w 1068w 1037sh	2 IR 3282m 3081w 2980sh 2940vw 1654s 1554vs 1440sh 1408m 1352vw 1313w 1250sh 1186vw 1125vw	Assignment ^{b,c} $ \begin{cases} Amide & A \\ Amide & B \end{cases} $ $ \begin{cases} \nu(CH) \\ Amide & II \end{cases} $ $ \begin{cases} \lambda(CO_2^-) \\ \lambda(CH_2) \\ \lambda(CH_2$
18aman 4421w 4258m 4067m 4933vs 4874sh 662m 555sh 444sh 421s 351sh 311m 240sh 185sh 133w 109w 076w 944w	0 IR 3282m 3078w 2962sh 2948vw 1652s 1553vs 1442sh 1407s 1352vw 1312w 1249sh 1184vw 1126vw 1076sh 1037vw 937vw	1 Raman 3423w 3260m 3071m 2933vs 2872sh 1664m 1570sh 1563m 1445sh 1422s 1350sh 1311m 1240sh 1188sh 1122w 1087sh 1070w 1044sh 943w	2 IR 3281m 3076w 2974vw 2939vw 1652s 1556vs 1444sh 1406s 1352vw 1314w 1250sh 1184vw 1122vw 1091sh 1040vw 935vw	Oct-o Raman 3416sh 3258w 3049sh 2935vs 2872sh 1664m 1597sh 1576m 1559sh 1444sh 1422s 1354sh 1313m 1238sh 1189sh 1136w 1076m 1048sh 944w	18 3296m 3079w 2978w 2944w 1654s 1551vs 1438sh 1406s 1351w 1310w 1249sh 1183vw 1122vw 1096sh 1039vw 936vw	1 Raman 3416w 3258m 3070m 2930vs 2881sh 1647sh 1594m 1580m 1548m 1424s 1312m 1250sh 1187sh 1089w 1067sh 1044sh 944vw	18 IR 3282m 3082w 2978vw 2943vw 1652s 1556vs 1443sh 1408m 1351vw 1311vw 1250sh 1185vw 1126vw 1126vw 11097sh 1030vw 936vw	Raman 3421w 3258m 3058m 2930vs 2874sh 1668m 1655m 1638m 1601sh 1559sh 1444sh 1421s 1353m 1309m 1256m 1194sh 1087sh 1074w 1038sh 942w	10 IR 3304m 3074vw 2975vw 2938vw 1654s 1556vs 1444sh 1407m 1352vw 1311w 1250sh 1184vw 1031vw 936vw	2 Raman 3416sh 3256w 3077sh 2933vs 2872sh 1666sh 1650m 1633sh 1606m 1582m 1311m 1246s 1362m 1311m 1246m 1181sh 1132w 1081w 1068w 1037sh 943vw	2 IR 3282m 3081w 2980sh 2940vw 1654s 1554vs 1440sh 1408m 1352vw 1313w 1250sh 1186vw 1125vw	Assignment ^{b,c} $ \begin{cases} Amide & A \\ Amide & B \end{cases} $ $ \begin{cases} \nu(CH) \end{cases} $ $ \begin{cases} Amide & II \\ \nu_{as}(CO_2^-) \\ s(CH_2) \end{cases} $ $ \begin{cases} \nu(CH_2) \\ t(CH_2) \\ t(CH_2) \\ Amide & III \end{cases} $ $ \begin{cases} W(CH_2) \\ Skeletal & and \\ Side-chain \\ stretching \end{cases} $
18 Raman 3421 w 3258 m 3067 m 2933 v s 2874 s h 662 m 555 s h 444 s h 421 s 351 s h 311 m 240 s h 185 s h 133 w 109 w 076 w 944 w 895 v w	0 IR 3282m 3078w 2962sh 2948vw 1652s 1553vs 1442sh 1407s 1352vw 1312w 1249sh 1184vw 1126vw 1076sh 1037vw 937vw 888vw	1 Raman 3423w 3260m 3071m 2933vs 2872sh 1664m 1590m 1570sh 1563m 1445sh 1422s 1350sh 1311m 1240sh 1188sh 1122w 1087sh 1070w 1044sh 943w 894vw	2 IR 3281m 3076w 2974vw 2939vw 1652s 1556vs 1444sh 1406s 1352vw 1314w 1250sh 1184vw 1122vw 1091sh 1040vw 935vw 888vw	Oct-o Raman 3416sh 3258w 3049sh 2935vs 2872sh 1664m 1597sh 1576m 1559sh 1444sh 1422s 1354sh 1313m 1238sh 1136w 1076m 1048sh 944w 895vw	18 3296m 3079w 2978w 2944w 1654s 1551vs 1438sh 1406s 1351w 1310w 1249sh 1183vw 1122vw 1096sh 1039vw 936vw 886vw 886vw	1 Raman 3416w 3258m 3070m 2930vs 2881sh 1647sh 1594m 1580m 1441sh 1424s 1312m 1250sh 1187sh 1089w 1067sh 1044sh 944vw 888vw	18 IR 3282m 3082w 2978vw 2943vw 1652s 1556vs 1443sh 1408m 1351vw 1311vw 1250sh 1185vw 1126vw 1097sh 1030vw 936vw 887vw	Raman 3421w 3258m 3058m 2930vs 2874sh 1668m 1655m 1638m 1601sh 1559sh 1444sh 1421s 1353m 1309m 1256m 1194sh 1087sh 1074w 1038sh 942w 891vw	10 IR 3304m 3074vw 2975vw 2938vw 1654s 1556vs 1444sh 1407m 1352vw 1311w 1250sh 1184vw 1031vw 936vw 888vw	2 Raman 3416sh 3256w 3077sh 2933vs 2872sh 1666sh 1650m 1633sh 1606m 1582m 1449sh 1424s 1362m 1311m 1246m 1181sh 1132w 1081w 1068w 1037sh 943vw 893vw	2 IR 3282m 3081w 2980sh 2940vw 1654s 1554vs 1440sh 1408m 1352vw 1313w 1250sh 1186vw 1125vw	Assignment ^{b,c} $ \begin{cases} Amide & A \\ Amide & B \end{cases} $ $ \begin{cases} \nu(CH) \end{cases} $ $ \begin{cases} Amide & II \\ \nu_{as}(CO_2^-) \\ s(CH_2) \end{cases} $ $ \begin{cases} \nu(CH_2) \\ t(CH_2) \\ t(CH_2) \\ Amide & III \end{cases} $ $ \begin{cases} W(CH_2) \\ Skeletal & and \\ Side-chain \\ stretching \end{cases} $
18 Raman 3421 w 3258 m 3067 m 2933 v s 2874 sh 662 m 555 sh 444 sh 421 s 351 sh 311 m 240 sh 185 sh 133 w 109 w 076 w 944 w	0 IR 3282m 3078w 2962sh 2948vw 1652s 1553vs 1442sh 1407s 1352vw 1312w 1249sh 1184vw 1126vw 1076sh 1037vw 937vw	1 Raman 3423w 3260m 3071m 2933vs 2872sh 1664m 1570sh 1563m 1445sh 1422s 1350sh 1311m 1240sh 1188sh 1122w 1087sh 1070w 1044sh 943w	2 IR 3281m 3076w 2974vw 2939vw 1652s 1556vs 1444sh 1406s 1352vw 1314w 1250sh 1184vw 1122vw 1091sh 1040vw 935vw	Oct-o Raman 3416sh 3258w 3049sh 2935vs 2872sh 1664m 1597sh 1576m 1559sh 1444sh 1422s 1354sh 1313m 1238sh 1189sh 1136w 1076m 1048sh 944w	18 3296m 3079w 2978w 2944w 1654s 1551vs 1438sh 1406s 1351w 1310w 1249sh 1183vw 1122vw 1096sh 1039vw 936vw	1 Raman 3416w 3258m 3070m 2930vs 2881sh 1647sh 1594m 1580m 1548m 1424s 1312m 1250sh 1187sh 1089w 1067sh 1044sh 944vw	18 IR 3282m 3082w 2978vw 2943vw 1652s 1556vs 1443sh 1408m 1351vw 1311vw 1250sh 1185vw 1126vw 1126vw 11097sh 1030vw 936vw	Raman 3421w 3258m 3058m 2930vs 2874sh 1668m 1655m 1638m 1601sh 1559sh 1444sh 1421s 1353m 1309m 1256m 1194sh 1087sh 1074w 1038sh 942w	10 IR 3304m 3074vw 2975vw 2938vw 1654s 1556vs 1444sh 1407m 1352vw 1311w 1250sh 1184vw 1031vw 936vw	2 Raman 3416sh 3256w 3077sh 2933vs 2872sh 1666sh 1650m 1633sh 1606m 1582m 1311m 1246s 1362m 1311m 1246m 1181sh 1132w 1081w 1068w 1037sh 943vw	2 IR 3282m 3081w 2980sh 2940vw 1654s 1554vs 1440sh 1408m 1352vw 1313w 1250sh 1186vw 1125vw	Assignment ^{b,c} $ \begin{cases} Amide & A \\ Amide & B \end{cases} $ $ \begin{cases} \nu(CH) \end{cases} $ $ \begin{cases} Amide & II \\ \nu_{as}(CO_2^-) \\ s(CH_2) \end{cases} $ $ \begin{cases} \nu(CH_2) \\ t(CH_2) \\ t(CH_2) \end{cases} $ $ \begin{cases} Amide & III \end{cases} $ $ \begin{cases} W(CH_2) \\ Skeletal & and \\ Side-chain \\ Stretching \end{cases} $

a) s, strong; m, medium; w, weak; v, very; sh, shoulder; Only the main vibrational bands are listed. b) From Ref. 11. c) ν , stretching; s, scissoring; t, twisting; w, wagging; r, rocking, amide I, mainly C=O stretching; amide II, N-H in-plane bending coupled with amide C-N stretching; amide III, mainly amide C-N stretching; amide A, N-H stretching and amide B, the overtone mode of amide II.

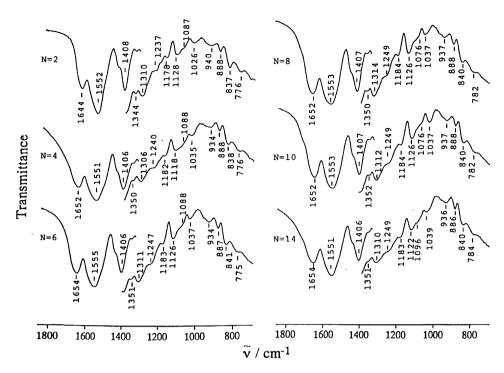


Fig. 2. FT IR spectra of oct-oligomer barium salts (N: residue number) in the solid state in the 700—1800 cm⁻¹ region.

ing from the C-terminal α -COO⁻ group are quite different from those of the side-chain COO⁻ groups in frequency. For an α -COO⁻ group, the $\nu_{\rm as}({\rm COO}^-)$ band appears at 1590—1600 cm⁻¹, while that for a γ -COO⁻ group appears at 1560—1570 cm⁻¹. For the vibrational spectra of the oct-oligomer salts the contribution from the $\nu_{\rm as}(\alpha$ -COO⁻) mode becomes greater as the residue number decreases.

For these oligomer salts, the Raman bands at 1421—1424 cm⁻¹, which increase in intensity with an increase in the residue number, and the IR bands at 1406—1408 cm⁻¹ closely correspond to the bands at 1424 (Raman) and 1414 (IR) cm⁻¹ arising from the COO⁻ symmetric stretching modes for β -Ca-poly(Glu).¹¹

The Raman band at 1439-1449 cm⁻¹ are assigned to the CH₂ scissoring modes of the *N*-octanoyl chain.

Amide III Modes. For the Raman and IR spectra of β -Ca-poly(Glu), the vibrational bands observed at 1260 cm⁻¹ have been assigned to the amide III modes (CN-stretching plus NH in-plane bending). For the octoligomer salts, no vibrational bands corresponding to the 1260 cm⁻¹ band of β -Ca-poly(Glu)¹¹⁾ are observed, and the Raman bands at 1238—1256 cm⁻¹ and the IR bands at 1237—1250 cm⁻¹ are observed in common for these salts. These bands may be due to disordered structures, since for the case of β -Ca-poly(Glu)¹¹⁾ the weak Raman band at 1238 cm⁻¹ and weak IR band at ca. 1248 cm⁻¹ result from disordered structures.

Skeletal and Side-Chain Stretching Modes and Raman Evidence for an Extended Helix Conformation. The modes at 900—1200 cm⁻¹ have major contributions from the skeletal backbone and side-chain

stretching for the oligomer salts. Figure 3 shows the FT Raman spectra of the oct-oligomer barium salts in the skeletal backbone and side-chain stretching region.

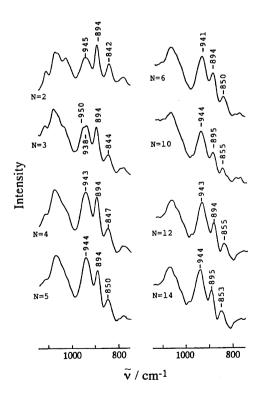


Fig. 3. FT Raman spectra of oct-oligomer barium salts (N: residue number) in the solid state in the 700—1100 cm⁻¹ region.

Sengupta and Krimm²³⁾ analyzed the normal modes for charged poly(Glu), indicating that the frequency of the skeletal $C^{\alpha}C$ stretching band in the 900—1000 cm⁻¹ region of the Raman, spectra is linearly correlated with the value of the dihedral angle (ϕ) , and is highly sensitive to the polypeptide backbone conformation. For α -poly(Glu)²⁹⁾ and the calcium salt of poly(Glu),¹¹⁾ the Raman bands in the 900—1000 cm⁻¹ region are associated with a skeletal $C^{\alpha}C$ stretching mode coupled with CN and CO stretching modes. This mode is observed at 956 cm⁻¹ for β -Ca-poly(Glu)¹¹⁾ and at 924 cm⁻¹ for α -helical poly(Glu).²⁹⁾ Moreover, their normal-mode calculations have shown that the band at 943 cm⁻¹ in the Raman spectrum of crystalline Ca-poly(Glu) can be assigned to an EH conformation.

For barium salts of the oct-oligomers, a comparison of the Raman-band frequencies in the 900—1000 cm⁻¹ region with the observed and calculated band frequencies for charged poly(Glu)¹¹⁾ and α -helical poly(Glu)²⁹⁾ in the same region may provide information concerning the local conformation of the oligomer salts. This attempt is very important, since very little is known about the critical size for taking up an EH conformation.

Figure 3 shows the Raman spectra of barium salts of the oct-oligomers in the 900—1000 cm⁻¹ region, reflecting the skeletal $C^{\alpha}C$ stretching mode combined with the CN and CO stretching modes. The Raman bands at 938—945 cm⁻¹ for all barium salts correspond well to the 943 cm⁻¹ band assigned to the EH form of Ca-poly(Glu), implying that these oct-oligomer barium salts may take up locally an EH conformation. However, the 938—945 cm⁻¹ bands of these oligomer salts (N=4-22) have a half width (full width at half maximum, $\Delta \tilde{\nu}_{1/2}$) of ca. 42 cm⁻¹, which is very close to the $\Delta \tilde{\nu}_{1/2}$ value (ca. 40 cm⁻¹) of the 949 cm⁻¹ band observed for the charged helix in solution,³¹⁾ indicating a broader distribution in the dihedral angle (ϕ) . Therefore, for these oligomer salts we may expect that there would be a larger distribution in ϕ than would be the case in the ordered environment of a crystal.

For the Raman spectra of the dimer and trimer salts, the bands at ca. $950~\rm cm^{-1}$ may arise from the *N*-terminal octanoyl chain, since these Raman bands increases in intensity with a decrease in the residue numbers.

Below 900 cm⁻¹, the Raman bands at 888—898 cm⁻¹ may be tentatively assigned to the $C^{\alpha}C$ and CN stretching modes.^{11,29)} However, these bands increase in intensity as the number of glutamyl residues decreases, implying that for very simple oct-oligomers these bands may result from the terminal octanoyl group. The weak Raman bands at 842—856 cm⁻¹ for the oct-oligomer salts may result from disordered structures, since the 850 cm⁻¹ Raman band for β -Ca-poly(Glu)¹¹⁾ was assigned to disordered structures coexisting with the β -sheet-type structure.

CH₂ Stretching Region. Five vibrational modes are predicted in the CH₂ stretching region. For very

simple oct-oligomer salts (N=2-6), the IR bands at 2857—2861, 2871—2873, 2929—2936, 2953—2958 cm⁻¹ are mainly observed in this region (Fig. 4), and can easily be assigned to four of these modes. Only two of these vibrational modes are seen in the Raman spectra. In the IR spectrum of β -calcium poly(Glu),¹¹ only three bands at 2875, 2936, and 2965 cm⁻¹ are observed. Therefore, the IR bands at 2871—2873, 2929—2936, and 2953—2958 cm⁻¹ mainly come from the CH₂ groups of the glutamyl residues. However, in the IR spectra of very simple oct-oligomer salts (N=2-4), the CH₂ stretching modes have a greater contribution from the octanoyl CH₂ groups.³²

For the IR spectra of these oligomer salts (N=2-22), on the whole, those bands arising from the CH₂ stretching modes are broadened. This may result from some disorder in the side chains. However, since some bands are still evident, we may assume that most of the side chains are in an extended conformation.

Conclusion

The amide I band at 1624 cm^{-1} , a characteristic of the antiparallel-chain pleated-sheet β -structure for Ca-poly(Glu), does not appear in the IR spectra of these oct-oligomer barium salts. Moreover, for these oligomers the very broad amide I bands at 1644— 1655 cm^{-1} are observed in common and correspond to the 1650— 1660 cm^{-1} (IR) bands resulting from the disor-

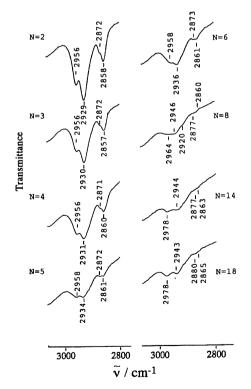


Fig. 4. FT IR spectra of oct-oligomer barium salts (N: residue number) in the solid state in the 2800—3000 cm⁻¹ region.

dered structure of Ca-poly(Glu).

No amide III bands (Raman and IR bands at 1260 cm⁻¹) characteristic of β -Ca-poly(Glu) have been observed, and the vibrational bands at 1238—1256 cm⁻¹ (Raman) and at 1237—1250 cm⁻¹ (IR) observed in the amide III region have been assigned to disordered structures.

However, in the $C^{\alpha}C$ stretching mode, which exhibits a sensitivity to a skeletal backbone conformation, the Raman bands at 938—945 cm⁻¹ are observed in common for the oct-oligomer salts, and closely correspond to the 943 cm⁻¹ band characteristic of the extended helix conformation of Ca-poly(Glu).

These results show that for a series of the oct-oligomer salts the peptide chains are disordered, but are locally relatively regular and may take up an extended helical conformation, even though there is a larger distribution in ϕ .

References

- 1) H. Lenormant, A. Baudras, and E. R. Blout, J. Am. Chem. Soc., 80, 6191 (1958).
- M. L. Tiffany and S. Krimm, *Biopolymers*, 6, 1379 (1968).
- 3) S. Krimm and J. E. Mark, *Proc. Natl. Acad. Sci. U.S.A.*, **60**, 1122 (1968).
- 4) H. D. Keith, F. J. Padden, Jr., and G. Giannoni, J. Mol. Biol., 43, 423 (1969).
- 5) H. D. Keith, G. Giannoni, and F. J. Padden, Jr., Biopolymers, 7, 775 (1969).
 - 6) H. D. Keith, Biopolymers, 10, 1099 (1970).
- 7) J. L. Koenig and B. G. Frushour, *Biopolymers*, **11**, 1871 (1972).
- 8) S. S. Zimmerman, J. C. Clark, and L. Mandelkern, *Biopolymers*, **14**, 585 (1975).
- 9) K. Itoh, B. M. Foxman, and G. D. Fasman, *Biopolymers*, **15**, 419 (1976).
- 10) G. D. Fasman, K. Itoh, C. S. Liu, and R. C. Lord, *Biopolymers*, **17**, 1729 (1978).
- 11) P. K. Sengupta and S. Krimm, Biopolymers, 23, 1565

- (1984)
- 12) M. L. Tiffany and S. Krimm, *Biopolymers*, **6**, 1767 (1968).
- 13) M. L. Tiffany and S. Krimm, *Biopolymers*, 8, 347 (1969).
- 14) E. W. Ronish and S. Krimm, *Biopolymers*, **11**, 1919 (1972).
- 15) S. Krimm, J. E. Mark, and M. L. Tiffany, *Biopolymers*, **8**, 695 (1969).
- 16) M. L. Tiffany and S. Krimm, *Biopolymers*, **11**, 2309 (1972).
- 17) M. L. Tiffany and S. Krimm, *Biopolymers*, **12**, 575 (1973).
- 18) S. Krimm and M. L. Tiffany, *Isr. J. Chem.*, **12**, 189 (1974).
- 19) W. B. Rippon and A. G. Walton, *Biopolymers*, **10**, 1207 (1971).
- 20) W. B. Rippon and A. G. Walton, J. Am. Chem. Soc., **94**, 4319 (1972).
- 21) M. K. Pal and M. Mandel, *Biopolymers*, **18**, 2267 (1979).
- 22) A. A. Makarov, N. G. Esipova, V. M. Lobachev, B. A. Grishkovsky, and Y. A. Pankov, *Biopolymers*, 23, 5 (1984).
- 23) P. K. Sengupta and S. Krimm, *Biopolymers*, **26**, S99 (1987).
- 24) R. Srinivasan, B. Balasubramanian, and S. S. Rajan, *Science*, **194**, 720 (1976).
- 25) M. Rinaudo and A. Domard, J. Am. Chem. Soc., 98, 6360 (1976).
- 26) M. Rinaudo and A. Domard, *Macromolecules*, **10**, 720 (1977).
- 27) M. Mutter, Macromolecules, 10, 1413 (1977).
- 28) T. Uehara, H. Okabayashi, K. Taga, T. Yoshida, and H. Kojima, J. Chem. Soc., Faraday Trans., 88, 3451 (1992).
- 29) P. K. Sengupta and S. Krimm, *Biopolymers*, **24**, 1479 (1985).
- 30) T. Uehara, H. Okabayashi, K. Taga, T. Yoshida, and H. Kojima, submitted for publication.
- 31) J. L. Koenig and B. Frushour, *Biopolymers*, **11**, 1871 (1972).
- 32) K. Miyagai, K. Taga, T. Yoshida, H. Okabayashi, and E. Nishio, *Colloid Polym. Sci.*, **269**, 153 (1991).